Friday, May 24, 2019

Coriolis Flowmeters

Coriolis flowmeter
U Shaped Coriolis flowmeters in field.
The Coriolis patents for industrial application were filed back in the 1950s, and the first Coriolis flowmeter was introduced in the 1970s. Coriolis flowmeters can accurately measure the density, mass flow, volumetric flow, and temperature of almost all types of fluids.

Coriolis flowmeters are used in a variety of industries ranging from oil and gas, petrochemicals, and food to chemical, life sciences, and — particularly — in transfer applications.

How Does a Coriolis Flow Meter Work?

Coriolis flowmeters work on the principle of Coriolis Force that was first explained by a French engineer and mathematician Gaspard-Gustave de Coriolis in the 19th century.  The Coriolis force represents an inertial force that acts on bodies in a rotating frame of reference.

Coriolis flow measuring
Diagram of Coriolis flow measuring sensor.
Also known as inertial mass flowmeters, Coriolis flowmeters measure fluid flow through inertia. The device has one or more measuring tubes that vibrate due to the force produced by an actuator. The twisting force inside the measuring tube is directly proportional to the mass flow of the liquid.

Coriolis meters have sensors inside the measuring flow tube made of magnet and coil assemblies. The sensors are located both at the inlet and outlet of the tube. A voltage in the form a sine wave is created as the coils move through the magnetic field.

The sine waves are in phase with each other when there is no liquid flow. Once the liquid flows through the tube, the measuring tubes twist depending on the mass flow. The sensors detect the extent of the twist by assessing the phase shift in the sine waves. The difference in phase shift helps in determining the mass flow rate.

Volumetric flow is determined by dividing the mass flow rate by the density of the liquid.

Density change is determined by assessing the change in oscillation frequency in response to the excitation inside the tube. The higher the mass flow rate, the lower will be the frequency change and density of the liquid flow.

Coriolis flowmeterLastly, Coriolis flowmeters can also be used to measure the temperature inside the tube. The device has sensors inside the tube that can detect temperatures of up to 752 F or 400 C.

The Pros and Cons of Coriolis Flow Meters  

Coriolis flow meters can assess liquid flow in both forward and reverse directions. Advanced Coriolis meters have dual curved tubes that can measure with more accuracy. Moreover, the device with curved tubes is characterized by lower pressure drop, making them ideal in specific situations such as wastewater handling, chemical processing, pulp and paper processing, and oil and gas industries.

Another application of Coriolis flow meters is in the pharmaceuticals and food and beverage industries. They can be used with a straight tube design so they are easy to clean. The flowmeters are also used in scientific studies for measuring corrosion and assessing liquids and gases. In addition, the flowmeters are used in mining operations to monitor liquid flow rate.
Miniature Coriolis Mass Flowmeter

While Coriolis meters allow accurate assessment of fluid flow, they are not free from errors. The
device can show inaccurate reading when air bubbles are present. The bubbles create splashing that results in generate inaccurate readings. They change the energy required for tube oscillation, resulting in a false assessment of fluid flow.

A lot of energy is spent in the vibration of the tube, especially in case of large spaces. This can also result in failure of accurate assessment of liquid flow inside the tube.

Installation and Calibration of Coriolis Flow Meter

Coriolis flowmeter must be installed with full liquid so that no air gets trapped inside the tube. The meter should also be drained completely before use. The ideal location for the flowmeter is a vertical pipe mount with an upward flow of fluid.

The Reynolds number is not a limitation with the Coriolis meter. In addition, there is no need for accounting for swirl and velocity profile distortion. As a result, the device can be used without adjusting for straight runs of relaxation piping to condition the liquid flow.

An air release upstream of the meter should be installed if there is a likelihood of air bubbles. In addition, filters, strainers, or air/vapor eliminators can help prevent air bubbles inside the tube. Control valves can also be installed to increase the back-pressure and reduce the likelihood of flashing.

For more information on Coriolis flowmeters contact Hile Controls of Alabama by calling 800-536-0269 or by visiting

Thursday, April 25, 2019

ABB LWT300 Series Guided Wave Radar Data Sheet

With fast and reliable settings, ABB's LWT300 series of instruments emphasizes measurement made easy. With its LevelExpert technology based on 20 years of experience, simply enter installation data and basic process conditions, and let LevelExpert do the rest: no echo mapping or baseline correction required.

Unlike traditional guided-wave radars that use device parameters requiring multiple adjustments, the LWT300 series of instruments does it for you. The instrument uses built-in intelligence to differentiate between the actual level and other false signals. It also keeps monitoring all these false signals while maintaining a reliable level reading. It is like having a level expert in each device.

Hile Controls of Alabama

Saturday, April 20, 2019

The ABB LWT Series Guided Wave Level Transmitter with LevelExpert

This video introduces the LWT Series level transmitters from ABB.

The ABB LWT Series is a family of guided wave radar transmitters utilizing the most advanced level algorithm, LevelExpert. With LevelExpert, you no longer need to be an instrument expert to accurately control level. With the LWT Series, the expert is inside.

Main Features:

To meet the most challenging level applications, the LWT300 series of instruments offers a wide range of configurations.

Temperature range: -45 to 200 °C (–49 to 392 °F) Maximum process pressure: vacuum to 200 bars (2900 psi)

• LevelExpert software for easy configuration, reliable surface detection and easy troubleshooting

• 2-wire powered and HART 7 communication

• SIL2 (no redundancy), SIL 3 (redundant configuration) 

• Certified for potentially explosive atmospheres

For more information, contact Hile Controls of Alabama:

Sunday, March 31, 2019

The ABB KM26 Magnetic Level Gauge: Design, Features, Applications

The ABB KM26 Magnetic Level Gauge provides custom engineered solutions to liquid level applications in industries such as: oil and gas, refinery, chemical, petrochemical, power generation and many more. 

The KM26 MLG has proven itself to be a safe, reliable, maintenance free solution for total and/or interface level detection in toxic, corrosive, high pressure and high temperature processes.

Hile Controls of Alabama

Saturday, March 23, 2019

White Paper: The Benefits of Two-Leg Three Phase Power Control

White paper courtesy of Eurotherm Schneider Electric.
Traditionally, three-leg power control is used in three phase heating applications. However, in some cases three-leg control is not a necessity and two-leg control can be a better option. Technological developments in SCR (silicon controlled rectifier) power controllers have resulted in new products and methods that can reduce both CAPEX and OPEX in these situations.

This paper discusses the benefits of utilizing two-leg power control in the EPower advanced SCR power controller, compared with traditional three-leg control.

You can download the entire Eurotherm white paper from this page on the Hile Controls of Alabama web site.

Wednesday, March 13, 2019

Bronkhorst IN-FLOW MFCs Now Available with FM approval for Class I, Division 2 and PROFINET

IN-FLOW MFCIN-FLOW Mass Flow Meters and Controllers up to pressure rating 400 bar (5800 psi) are now available with FM approval for Class I, Division 2, for the North American market. These MFCs are available with a rugged  IP65 (dust - and waterproof) construction and an optional ATEX approval for use in Category 3, Zone 2 hazardous areas.

Additionally, Bronkhorst is now offering a PROFINET fieldbus interface on their industrial mass flow meters and controllers for gases (FM and ATEX approvals pending). PROFINET is looked at as the new standard for industrial automation, offering major savings in configuration and commissioning.

The flexible architecture of PROFINET, with its comprehensive scope of functions, enables innovative, flexible, and cost-saving machine automation provides:
  • Maximum performance and precision.
  • Flexible address assignment and modular design
  • Fast commissioning thanks to open access and defined interfaces
  • Optimal diagnostics of devices as well as the network.
Applications for Bronkhorst Mass Flow Meters and Controllers
  • Process gas measurement in food industry, chemical and petrochemical industries, in fermentation installations and in biotechnology
  • Sample gas measurement in environmental analysis
  • Gas consumption measurement for internal accounting
  • Systems for environmental air sampling
  • Hydrogen techniques
  • Burner control
For more information, contact Hile Controls of Alabama. Call them at 800-536-0269 or visit their web site at

Thursday, February 28, 2019

Identifying the Components and Construction of the Autrol APT3500 Smart Pressure Transmitter

The Autrol APT 3500 Smart Pressure Transmitter is a microprocessor-based high-performance transmitter, which has flexible pressure calibration and output, automatic compensation of ambient temperature and process variable, a configuration of various parameters, communication with HART protocol. The application is very various, as measuring liquid, gas or steam flow as well as pressure and liquid level by an application method. All data of the sensor is to be input, modified and stored in EEPROM.

For more information about Autrol instrumentation, contact Hile Controls of Alabama.

Friday, February 22, 2019

Innovative DEVCOM 2000 Converts Ordinary Laptop PC's into Full-featured HART Communicator

ProComSol is the creator of the innovative DEVCOM 2000 SMART device communicator, a breakthrough that converts an ordinary laptop PC into a full-featured HART communicator. With the DEVCOM 2000 software and a HART modem you can configure transmitters and control valves on the bench or in the field quickly, easily and economically.

For unprecedented levels of convenience, efficiency, and safety, the DEVCOM 2000 system is also available with Bluetooth capability for communication with field devices. This can be handy for devices installed in unsafe or difficult to reach locations. ProComSol, which stands for "PROcess COMmunication SOLutions", is the leading provider of field-proven HART communication solutions for industrial applications, and was the first to deploy Bluetooth technology to configure and troubleshoot transmitters and control valves.

ProComSol developed the DEVCOM 2000 software on the PC platform because it offers the
advantages of a powerful and flexible, yet familiar and intuitive, tool to meet many of your industrial automation needs. For example, the PC can effectively store and present configuration tools user manuals, operating procedures, reports, and a host of other tools. Configurations can be saved as PDF files in order to keep a record of all up-to-date configurations of your devices. The PC makes it easy to integrate HART information into your reports and emails. This not only gives you the potential for system-wide productivity increases, but also eliminates the need to purchase and maintain a separate handheld HART communicator.

The DEVCOM 2000 software has been tested and proven by more than a thousand users in many industries including oil and gas refining, chemical and petrochemical, power generation,  water and wastewater, pharmaceuticals, pulp and paper, mining and metals, and food and beverage. Quality is an integral part of the design, development, and production of ProComSol products. Their quality management system has been certified to ISO 9001. 

Last, but not least, unlike handheld HART communicators that typically cost between $4000 and $7000 dollars, the DEVCOM 2000 system costs approximately $1000 and can be easily and economically upgraded to include additional functions as they become available. Each DEVCOM 2000 comes complete with warranty and free software upgrades during the first year of ownership.

The DEVCOM 2000 Windows Explorer interface is intuitive and easy to use. Menus's are clearly available, as are the variables list. Because it's on the computer screen, the menu structure can be expanded or contracted as required so there is no need to dig through small device menus to perform a task. With the full keyboard available, data entry is also easy. The computer screen continuously displays the variables, with items in bold being editable and items in grey being read-only. Edited variables are shaded in yellow, which means the variable has been edited but not yet committed to the device. After clicking on the send icon, the yellow shading goes away and the variable has been changed in the device. It's that simple.

HART Protocol's popularity is partially based on the ability to "get data out of the field device" through a data file called a Device Description (DD). The DEVCOM 2000 includes a list of DD's in the DEVCOM 2000 software. The DEVCOM 2000 uses the compiled device description binary file the DD developed by the device manufacturer and registered with the HART Communication Foundation. Each DD has been tested by the device manufacturer. This is an important point because we know that every DD will work with the device be it a transmitter or control valve. The Windows Explorer interface enables other DD's to be easily added in the field. In fact, because it's so easy to add DD's in the field, many device manufacturers are using DEVCOM 2000 to test new DDS that they are currently developing. The DD library is updated and published four times per year by the HART Communication Foundation and new DEVCOM 2000 updates are available shortly after. Updates can be downloaded for free from the ProComSol website during the one-year warranty period, and in subsequent years by paying a nominal library subscription fee.

For more about DEVCOM 2000 or any ProComSol product, contact Hile Controls of Alabama. They can be reached by phone at 800-536-0269 or by visiting

Tuesday, February 12, 2019

Hazardous Gas Detection: Selecting the Right Device

Sensepoint Flammable and Toxic Gas Detector
Sensepoint Flammable
and Toxic Gas Detector
Reprinted from an original article by Don Galman of Honeywell Analytics

There are many gas detection products on the market that might appear to be the same, but a closer inspection of specification, functionality and features reveals major differences in what products can do and the potential value they can offer. Similarly, individual applications are also unique in their respective designs, needs and processes undertaken.


Before beginning to consider gas detection equipment, a risk assessment needs to be conducted. Any company employing staff has the obligation to conduct risk assessments to identify potential hazards and these can include potential gas, vapor or Oxygen deficiency risks. If gas hazards are identified, gas detection is applicable as a risk reduction method.


Depending on the processes being undertaken and the gases being detected, remote or off-site alarm notification plus event data logging/reporting may also be required for Health and Safety management records. Another factor impacting on the need for enhanced reporting functions might be regulatory compliance or a condition of insurance.


Having identified the primary objective, the suitable equipment is selected by asking a number of key questions. These fall into three broad categories:

  • The gases to be detected and where they may come from
  • The location and environmental conditions where detection is to take place
  • The ease of use for operators and routine servicing personnel

Honeywell Analytics XNX Universal Transmitter
Honeywell Analytics XNXUniversal Transmitter

The gases to be detected should be identified by the risk assessment, however experienced gas detection equipment manufacturers and their approved distributors are often able to help in this process, based on their experience of similar applications. However, it is important to remember that it is the end-user’s responsibility to identify all potential hazards.

It is also essential to identify the potential source of a gas release as this helps determine the number and location of detectors required for a fixed gas detection system.


The performance, accuracy and reliability of any gas detection equipment will be affected by the environmental conditions it is subjected to. Temperature, humidity and pressure levels at the location all have a direct bearing on the type of equipment that should be selected. Additional factors such as potential variations resulting from a production process itself, diurnal/nocturnal fluctuations and seasonal changes may also affect the type of device which is suitable.


The next area of consideration relates to additional product functionality. Aspects like wiring configuration are important, especially when retro-fitting into an existing application. If the apparatus is being integrated into a separate safety system, certain communication protocols may also be required such as HART®, Lonworks or Modbus®.

Consideration will also need to be given regarding the requirement for local displays on transmitter units and local configuration of the unit and gas displays may also be a useful addition.


Routine maintenance is another important consideration. Some gases and vapors can be detected with a number of different sensing technologies, e.g. Hydrocarbon gases with catalytic beads or Non-dispersive Infrared NDIR. Catalytic beads do not provide fail-to-safety operation and therefore can require a high frequency of routine maintenance, however NDIR based solutions tend to have a higher initial purchase price, but may require less routine maintenance. In-house resource to undertake such routine maintenance needs to be identified and in the absence of such a resource, budgeting for third party maintenance is an important factor in selecting the right equipment.

For more information about Honeywell Analytics gas detection solutions, contact Hile Controls of Alabama by visiting their web site ( or calling 800-536-0269.

Thursday, January 31, 2019

Principles of PID Control and Tuning White Paper

PID Control
PID is short for "proportional plus integral and derivative control", the three actions used in managing a control loop. Process loop controllers use one, two or all three of these to optimally control the process system. PID control is used in a wide variety of applications in industrial control and process system management.

Download "Principles of PID Control and Tuning" from the Hile Controls website here.

Courtesy of Eurotherm. Eurotherm offers a wide range of single & multi-loop PID controllers.

Sunday, January 27, 2019

Tutorial on Setting Up the Jordan Valve Mark 70SP Series Sliding Gate Control Valve

The Jordan Mark 70SP Series is a line of pneumatically operated diaphragm control valves that combine multiple spring actuators with the precision of Jordan Valve's advanced sliding gate seat for closer control and greater accuracy.

Consisting of a modulating disc and stationary plate, the sliding gate seat components are slotted with multiple orifices that align to provide the precise flow needed to maintain the process requirements. The valve strokes in a fraction of the travel required by conventional control valves for rapid correction of any deviation from the process setpoint.

Jordan's unique sliding gate control valve trim teams up with pressure, temperature pH, level, or flow controllers for fast response, long term reliability, and high levels of accuracy on steam, gas, liquid and chemical services.

For more information about all Jordan Valve products, contact Hile Controls of Alabama by calling 800-536-0269 or visiting

Saturday, January 12, 2019

The ABB LMS200 Magnetic Level Gauge Switch

LMS200 Magnetic Level Gauge SwitchIf you're looking for reliable liquid level detection from a non–invasive, non–contact, and economical device, ABB has a solution you need to consider.
LMS200 Magnetic Level Gauge Switch
ABB’s magnetic level gauge switches provide safe and reliable liquid level detection and process control when integrated externally on the KM26 series magnetic level gauges and LS series products. The LMS200 series are non–invasive magnetically actuated electrical switches that provide complete isolation from the process fluid by coupling with the magnetic floats and attraction sleeves already present in the ABB KM26 and LS series magnetic level gauge.

This passive,  method of coupling facilitates safe operation, while also eliminating the need for costly seals, diaphragms, and process connections commonly associated with point level switch technology. The superior design enables the setpoint to be adjusted without any changes to process piping, resulting in level switches that are quickly deployed, readily adjustable, and easy to maintain.

LMS200 Magnetic Level Gauge Switch
LMS200 Magnetic Level Gauge Switch (exploded view)
LMS200 Magnetic Level Gauge Switch
The LMS200 provides double–pole, double–throw (DPDT) switching in the form of two isolated normally open or normally closed contacts. Since the switch is configured in a double pole double throw configuration, two separate devices can be controlled with the same switch. The current switching capacity of the switch allows for a wide variety of devices to be switched as long as the stated limits are not exceeded. Since the LMS200 is magnetically actuated, it is suited for any application where it is necessary to sense the passing of a magnetic float on a KM26, or similar chamber, attached to a vessel containing fluid. This will provide for the detection of a start/stop trip point of either a total or interface level of any vessel. These trip points can be used for alarms or activating a pump motor starter relay.

LMS200 Magnetic Level Gauge Switch
The LMS200 is mounted using two standard stainless steel clamps that pass over the tabs mounted to the switch housing The clamp is then fastened to the KM26, or similar chamber. The switch can be easily positioned by loosening the clamp with a screwdriver and sliding the switch to the correct position on the chamber. Other switches can be added at any time, without the concern for additional process piping or valves.

For more information on the LMS200 Magnetic Level Gauge Switch, or any ABB process level product, contact Hile Controls of Alabama.