Tuesday, February 12, 2019

Hazardous Gas Detection: Selecting the Right Device

Sensepoint Flammable and Toxic Gas Detector
Sensepoint Flammable
and Toxic Gas Detector
(Honeywell)
Reprinted from an original article by Don Galman of Honeywell Analytics

There are many gas detection products on the market that might appear to be the same, but a closer inspection of specification, functionality and features reveals major differences in what products can do and the potential value they can offer. Similarly, individual applications are also unique in their respective designs, needs and processes undertaken.

KNOW YOUR SITE RISKS

Before beginning to consider gas detection equipment, a risk assessment needs to be conducted. Any company employing staff has the obligation to conduct risk assessments to identify potential hazards and these can include potential gas, vapor or Oxygen deficiency risks. If gas hazards are identified, gas detection is applicable as a risk reduction method.

IDENTIFYING THE PRIME OBJECTIVE

Depending on the processes being undertaken and the gases being detected, remote or off-site alarm notification plus event data logging/reporting may also be required for Health and Safety management records. Another factor impacting on the need for enhanced reporting functions might be regulatory compliance or a condition of insurance.

ASK THE RIGHT QUESTIONS

Having identified the primary objective, the suitable equipment is selected by asking a number of key questions. These fall into three broad categories:

  • The gases to be detected and where they may come from
  • The location and environmental conditions where detection is to take place
  • The ease of use for operators and routine servicing personnel

Honeywell Analytics XNX Universal Transmitter
Honeywell Analytics XNXUniversal Transmitter
IDENTIFY THE GASES TO BE DETECTED AND WHERE THEY MAY COME FROM

The gases to be detected should be identified by the risk assessment, however experienced gas detection equipment manufacturers and their approved distributors are often able to help in this process, based on their experience of similar applications. However, it is important to remember that it is the end-user’s responsibility to identify all potential hazards.

It is also essential to identify the potential source of a gas release as this helps determine the number and location of detectors required for a fixed gas detection system.

CONSIDER THE ENVIRONMENTAL CONDITIONS

The performance, accuracy and reliability of any gas detection equipment will be affected by the environmental conditions it is subjected to. Temperature, humidity and pressure levels at the location all have a direct bearing on the type of equipment that should be selected. Additional factors such as potential variations resulting from a production process itself, diurnal/nocturnal fluctuations and seasonal changes may also affect the type of device which is suitable.

UNDERSTAND PRODUCT FUNCTIONALITY

The next area of consideration relates to additional product functionality. Aspects like wiring configuration are important, especially when retro-fitting into an existing application. If the apparatus is being integrated into a separate safety system, certain communication protocols may also be required such as HART®, Lonworks or Modbus®.

Consideration will also need to be given regarding the requirement for local displays on transmitter units and local configuration of the unit and gas displays may also be a useful addition.

MEASURE THE EASE OF USE FOR OPERATORS AND ROUTINE SERVICING PERSONNEL

Routine maintenance is another important consideration. Some gases and vapors can be detected with a number of different sensing technologies, e.g. Hydrocarbon gases with catalytic beads or Non-dispersive Infrared NDIR. Catalytic beads do not provide fail-to-safety operation and therefore can require a high frequency of routine maintenance, however NDIR based solutions tend to have a higher initial purchase price, but may require less routine maintenance. In-house resource to undertake such routine maintenance needs to be identified and in the absence of such a resource, budgeting for third party maintenance is an important factor in selecting the right equipment.

For more information about Honeywell Analytics gas detection solutions, contact Hile Controls of Alabama by visiting their web site (https://hilealabama.com) or calling 800-536-0269.

Thursday, January 31, 2019

Principles of PID Control and Tuning White Paper

PID Control
PID is short for "proportional plus integral and derivative control", the three actions used in managing a control loop. Process loop controllers use one, two or all three of these to optimally control the process system. PID control is used in a wide variety of applications in industrial control and process system management.

Download "Principles of PID Control and Tuning" from the Hile Controls website here.

Courtesy of Eurotherm. Eurotherm offers a wide range of single & multi-loop PID controllers.

Sunday, January 27, 2019

Tutorial on Setting Up the Jordan Valve Mark 70SP Series Sliding Gate Control Valve


The Jordan Mark 70SP Series is a line of pneumatically operated diaphragm control valves that combine multiple spring actuators with the precision of Jordan Valve's advanced sliding gate seat for closer control and greater accuracy.

Consisting of a modulating disc and stationary plate, the sliding gate seat components are slotted with multiple orifices that align to provide the precise flow needed to maintain the process requirements. The valve strokes in a fraction of the travel required by conventional control valves for rapid correction of any deviation from the process setpoint.

Jordan's unique sliding gate control valve trim teams up with pressure, temperature pH, level, or flow controllers for fast response, long term reliability, and high levels of accuracy on steam, gas, liquid and chemical services.

For more information about all Jordan Valve products, contact Hile Controls of Alabama by calling 800-536-0269 or visiting https://hilealabama.com.

Saturday, January 12, 2019

The ABB LMS200 Magnetic Level Gauge Switch

LMS200 Magnetic Level Gauge SwitchIf you're looking for reliable liquid level detection from a non–invasive, non–contact, and economical device, ABB has a solution you need to consider.
LMS200 Magnetic Level Gauge Switch
ABB’s magnetic level gauge switches provide safe and reliable liquid level detection and process control when integrated externally on the KM26 series magnetic level gauges and LS series products. The LMS200 series are non–invasive magnetically actuated electrical switches that provide complete isolation from the process fluid by coupling with the magnetic floats and attraction sleeves already present in the ABB KM26 and LS series magnetic level gauge.

This passive,  method of coupling facilitates safe operation, while also eliminating the need for costly seals, diaphragms, and process connections commonly associated with point level switch technology. The superior design enables the setpoint to be adjusted without any changes to process piping, resulting in level switches that are quickly deployed, readily adjustable, and easy to maintain.

LMS200 Magnetic Level Gauge Switch
LMS200 Magnetic Level Gauge Switch (exploded view)
LMS200 Magnetic Level Gauge Switch
Wiring
The LMS200 provides double–pole, double–throw (DPDT) switching in the form of two isolated normally open or normally closed contacts. Since the switch is configured in a double pole double throw configuration, two separate devices can be controlled with the same switch. The current switching capacity of the switch allows for a wide variety of devices to be switched as long as the stated limits are not exceeded. Since the LMS200 is magnetically actuated, it is suited for any application where it is necessary to sense the passing of a magnetic float on a KM26, or similar chamber, attached to a vessel containing fluid. This will provide for the detection of a start/stop trip point of either a total or interface level of any vessel. These trip points can be used for alarms or activating a pump motor starter relay.

LMS200 Magnetic Level Gauge Switch
Mounting
The LMS200 is mounted using two standard stainless steel clamps that pass over the tabs mounted to the switch housing The clamp is then fastened to the KM26, or similar chamber. The switch can be easily positioned by loosening the clamp with a screwdriver and sliding the switch to the correct position on the chamber. Other switches can be added at any time, without the concern for additional process piping or valves.


For more information on the LMS200 Magnetic Level Gauge Switch, or any ABB process level product, contact Hile Controls of Alabama.

https://hilealabama.com
800-536-0269

Wednesday, December 12, 2018

Happy Holidays from All of Us at Hile Controls of Alabama

From all of us at Hile Controls of Alabama, we wish our customers, partners and vendors a safe and happy holiday season and a wonderful 2019!


Saturday, December 8, 2018

Infrared Products for Monitoring Smokeless Flares, Pilots, and Flame Intensity

Infrared Monitoring Smokeless Flares

Smokeless Flares

Smokeless flares incinerate flammable hazardous vent gas with the assistance of supplemental high-velocity air or steam to prevent the formation of soot or smoke. Excessive injection of air or steam reduces combustion efficiency, resulting in the release of hazardous VOC gases. Meanwhile, inadequate injection of air or steam results in the formation of undesirable soot and smoke. Although modern flares are designed for high flow rates associated with an emergency condition, they most commonly operate at high-turn-down, low-flow rates, making it challenging for the flare to operate at optimal combustion efficiency.


Pilot Monitor

Flammable vent gases are ignited by a pilot flame when released into the atmosphere by refineries, natural gas processing plants, and petrochemical plants. The proper incineration of these gases is a critical safety and environmental concern. Therefore, it is essential to confirm that the pilot is lit at all times. Monitoring via a thermocouple is common, however, failures frequently occur and replacements can require costly process shutdowns. Remote sensing IR technology (PM) is the superior alternative.

Flame Intensity Monitors

Williamson Flame Intensity Monitors (FI) are the single-wavelength sensors of choice for a variety of flare applications where the more sophisticated dual-wavelength flare products are not appropriate or are not required. Products specifically designated for flame intensity monitoring applications include:
  • Pilot Monitoring of Hydrogen, Ammonia or CO Flames
  • Pilot Monitoring of Ground Flares and Landfill Flares
  • Flame Intensity Monitoring
Download the Infrared Products for Monitoring Smokeless Flares, Pilots, and Flame Intensity brochure here.

For more information, contact Hile Controls of Alabama by calling 800-536-0269 or visiting https://hilealabama.com.